

Solvents and Solvolysis Reactions

Brendan Parent & Auriole C.R. Fassinou

July 17th, 2020

OCSP Lecture #12

Lecture 12 Learning Objectives

- Classification of Solvents
 - Protic vs. Aprotic
 - Lewis Donor vs. Non-donor
 - Polar vs. Non-polar
- Solvolysis Reactions
 - Tert-butyl Bromide Solvolysis
 - SN1 Mechanism
 - E1 Mechanism

Introduction to Classifying Solvents

Protic vs. Aprotic Solvents

• Protic solvents are good hydrogen bond donors

• Aprotic solvents cannot act as hydrogen bond donors

Lewis Donor vs. Non-Donor Solvents

• Donor solvents: molecules containing Oxygens or Nitrogens that can donate unshared electron pairs

• Non-Donor Solvents: molecules that cannot act as Lewis bases

Polar vs. Non-Polar Solvents

- Polar solvents have dielectric constant ≥ 15
- Non-Polar solvents have dielectric constant < 15
 - -What is the dielectric constant?

Dielectric Constant (cont.)

Solvolysis Reactions

Solvolysis:

The reaction of an alkyl halide with a solvent in which no other base or nucleophile has been added.

Solvolysis of Tert-butyl bromide - SN1

Solvolysis Continued - E1

Competing Reactions

Rearrangement

Final Points SN1/E1, SN2/E2

Putting it all together...

Substrate	Protic Solv.	Aprotic Solv.	Strong Base	Bulky Base
CH ₃ -Br	SN2	SN2	SN2	SN2
1°	SN2	SN2	SN2/E2	E2
2°	SN1/E1	SN2	E2/SN2	E2
3°	SN1/E1	SN1/E1	E2	E2