

OCSP 2020: Lecture 7

allere C=C

Today's Agenda

- Syn Addition (alkene with H₂ + Pd/C)
- Anti Addition (alkene with Br₂, alkene with Br₂ and H₂O)
- Markovnikov additions (alkene with H-X)
- Anti-Markovnikov additions (alkene with HBr and HOOR)
- Ozonolysis

Alkene Additions

- General pattern: the double bond attacks an atom on another molecule, forming an intermediate (often a carbocation)
 - Next, this intermediate is attacked at an electrophilic point,, creating the product

Syn addition- atoms add to same face of molecule

Anti addition-atoms add to different faces of molecule

Review: stability of carbocations

Tertiary C+ >> secondary C+ >>> primary C+

More stable intermediates and products are preferred and are easier to form

Syn-Addition

Example: alkene with H₂ and Pd/C

$$\frac{1}{1}$$

Syn-Addition

Example: Alkene with H₃O[†] (alternatively: any source of H+ and H₂O)

Anti-Addition

OVOVITUE:

• Example: Alkene with Br₂

the CH3 + BC > CH3

Mechanism:

BC-BC

triangular intervoisite "Bromonium ion"

CH3 BC H3

OVOVICUS

Anti-Addition

-Example: alkene with $\mathrm{Br_2}$ and $\mathrm{H_2O}$

$$\frac{B^2}{H_2O^7}$$

Mechanism:

Stereochem and Anti-Addition

• "Z" stereoisomers *can* result in a product and its enantiomer

• "E" stereoisomers will result in a meso (achiral) compound

Stereochem of Anti-Addition

Example with a ring:

Markovnikov Rule

- Alkene addition; product with the **most stable C+ intermediate** is *preferable*× (halogen) adds to more substituted C

 × (halogen) adds to more substituted C

 × (halogen) adds to more substituted C

- H prefers C with more H's
- This intermediate will be the most stab
- Example: Alkene & H-X (e.g. HBr)

Anti-Markovnikov Additions

X added to C with most H's

- OPPOSITE HAPPENS! (H added to more substituted C)
- Example: alkene + HBr with peroxide (RO-OR) HOOR

- Mechanism involves radicals do not worry about memorizing
- We will cover more anti-markovnikov additions later this week!

Quick Check | What are the product(s) of this rxn?

Watch out for hydride shifts!

tertiary canocation
3°>2°>1

Hydride shifts can occur if... 3° next to 2°, 3° next to 1°, or 2° next to 1°

Watch out for methyl shifts!

- Methyl (or alkyl) shifts can occur if...4° next to 2°, 4° next to 1°
 - Don't occur as readily as H shifts because they are larger (think steric hindrance)

Regiochemistry vs. Stereochemistry

- Stereochemistry deals with stereoisomers
 - Syn and Anti products are terms used to describe stereochemistry

- Regiochemistry deals with constitutional isomers
 - Markovnikov and Anti-Markovnikov products are terms used to describe regiochemistry

Advice for reactions

- Concentrate on how to create on stability
 - Certain reactions follow the Markovnikov Rule because it is more stable for them
 - H and methyl shifts occur to increase stability

Anti-Markovnikov Additions

- Results to H being added to more substituted C on alkene
- Example: alkene + HBr with trace peroxides (HOOR)

- Mechanism involves radicals-do not worry about memorizing it
- We will cover more anti-markovnikov additions later this week