
Solvents and Solvolysis Reactions classification of Solvents (1) Bronsted protic vs aprotic (2) Lewis donor vs non-donor (3) polar vs apolar

protic solvents stabilize anions:

Solvation = favorable interaction of a dissolved molecule with solvent.

a second

(2) Lewis donor us non-donor

· donor solvents = molecules containing oxygens or nitrogens that can donate unshared electron pairs (molecules that can act as lewis bases) Ex: Ether, THF, HzO, alcohols ROFR (O:

· non-donor solvents = molecules that cannot act as Lewis bases

Ex: alkanes, benzene, DCM, chloroform CHClz

Note: even though DCM & chlorotorin have
halogen atoms with unshared e pairs,
they are very poor LBs and are
considered non-donors

(3) polar is applar
polar solvents have dielectric constant = 15
applar solvents have dielectric constant = 15
dielectric constant,
$$r = interaction energy between twolons with respective charges 9, 3 92 separated by distance rimeasures ease of separating charges) $r = x \frac{9.9}{2r}$
dielectric constant
* large E, magnitude of interaction E is small;
this means attractive and repulsive forces between
charges are weak.
* oppositely charged ions tend to associate less in
a polar solvent than applar.

- All polar solvents consist of dipolar molecules, but
not all dipolar molecules are polar solvents -$$

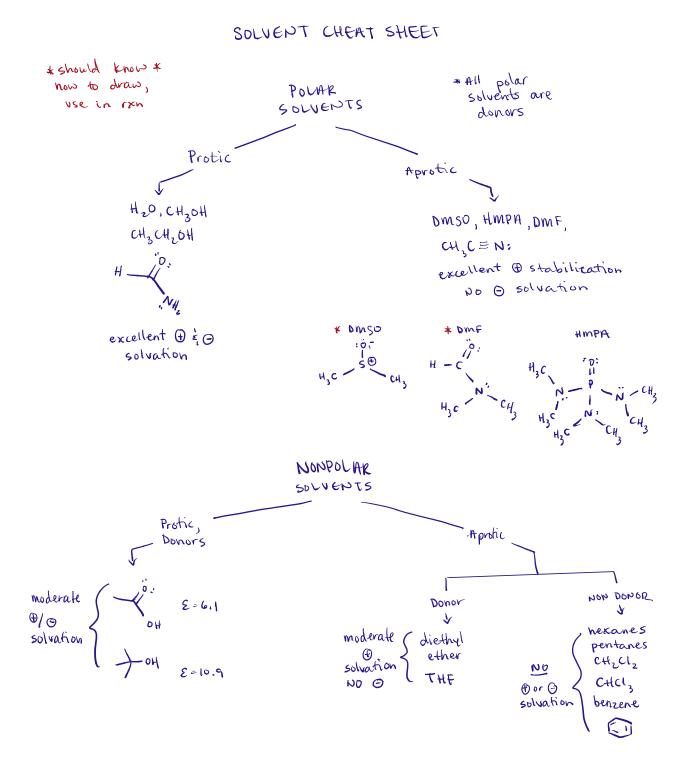
M=1.5-1.7D E= 6.1

Formic acid M = 1.6 - 1.80E = 59

5:05 PM Thu Jun 18

Marc Loudon, Jim Parise Organic Chemistry.pdf

 \times


ull 🗢 64% 🔳

Q = ...

							Class	
Solvent	Structure	Common abbrevation	Boiling point, °C	Dielectric constant ϵ^*	Dipole moment	Polar	Protic	Donor
hexane	CH ₃ (CH ₂) ₄ CH ₃	-	68.7	1.9	0.08			
1,4-dioxane [†]	0_0	-	101.3	2.2	0.4			х
benzene [†]	$\langle \rangle$	-	80.1	2.3	0.1			
diethyl ether	(C ₂ H ₅) ₂ O	Et ₂ O	34.6	4.3	1.2			х
chloroform	CHCl ₃	-	61.2	4.8	1.2			
ethyl acetate	O ∥ CH₃COC₂H₅	EtOAc	77.1	6.0	1.6			х
acetic acid	O ∥ CH₃COH	HOAc	117.9	6.1	1.6		x	х
tetrahydrofuran	$\langle \rangle$	THF	66	7.6	1.7			х
dichloromethane	CH ₂ Cl ₂	DCM	39.8	8.9	1.1			
acetone	0 ∥ CH₃CCH₃	Me ₂ CO	56.3	21	2.7	х		x
ethanol	C ₂ H ₅ OH	EtOH	78.3	25	1.7	х	х	х
N-methylpyrrolidone	N CH ₃	NMP	202	32	4.0	x		х
methanol	CH ₃ OH	MeOH	64.7	33	2.9	х	х	х
nitromethane	CH ₃ NO ₂	MeNO ₂	101.2	36	3.4	х		х
N, N- dimethylformamide	O ∥ HCN(CH₃)₂	DMF	153.0	37	3.9	х		x
acetonitrile	CH₃C≡N	MeCN	81.6	38	3.4	х		х
sulfolane	o s o	_	287 (dec)	43	4.7	х		х
dimethyl sulfoxide	O ∥ CH₃SCH₃	DMSO	189	47	4.0	x		х
formic acid	о НСОН	-	100.6	59	1.7	x	х	х
water	H ₂ O	-	100.0	78	1.9	х	х	х
formamide	0 II	_	211 (dec)	111	3.9	х	х	х

* Most values are at or near 25 °C $\,$ $^{+}$ Known carcinogen

from Prof Ganem's LLC

.

solvent choice important for SNI/EI, SNZ/EZ reactions

solvolysis reactions

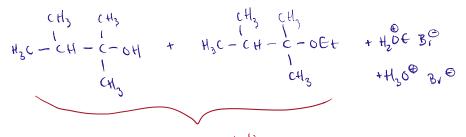
solvolysis: the reaction of an alkyl halide with a solvent in which no other base or nucleophile has been added.

soluolysis of tert-butyl branide

Polar Protic solvent stabilizes carbocation

$$(cH_{3})_{3}(-Br \rightleftharpoons (cH_{3})_{3}C^{\oplus} Br^{\oplus})$$

$$H_{3}c - c^{\oplus} (H_{0}Et \longrightarrow H_{2}c = c^{(H_{3})} H_{2}^{\oplus}OEt Br^{\oplus})$$


$$H_{4} - c^{\oplus} H_{4} (H_{3}) H_{2}^{\oplus}OEt \oplus H_{3}^{\oplus})$$

$$H_{4} - c^{\oplus} H_{4} (H_{3}) H_{2}^{\oplus}OEt \oplus H_{3}^{\oplus})$$

$$H_{4} - c^{\oplus} H_{4} (H_{3}) H_{2}^{\oplus}OEt \oplus H_{3}^{\oplus})$$

Reaction Summary:

- -tert-butyl bromide in polar protic solvent forms carbocation intermediate
- solvent reacts with a B-hydrogen to Form an alkene -- Elling the El reaction mechanis

38% substitution product

Rearrangements are also possible in sime solvolypis rxns

$$H_{3}C - C - CH - CI \qquad \xrightarrow{CH_{3}} CH_{3} + CH_{$$

For SN2-E2 reactions, polar aprotic solvents preferred polar protic solvents stablilize the nucleophile, reducing its effective negative charge and therefore its nucleophilicity.

Substrate	Protic Solv.	Aprofic Solv.	Strong B	Bulky B	
CH3-Br	5,02	5,2	SN2	5, 2	
۱°	5,2	SN2	SN2/EZ	E2	
z°	501/El	SN2	E2/5N2	E2	
3°	SNILEI	501/E1	E2	EZ	

* B = Base Solu. = Solvent

* From Organic Chemisty Tutor